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Abstract

Objective To review the immune response to inject-

able anesthetics and sedatives and to compare the

immunomodulatory properties between inhalation

and injectable anesthetic protocols.

Study design Review.

Methods and databases Multiple literature searches

were performed using PubMed and Google Scholar

from March 2012 through November 2013. Rele-

vant anesthetic and immune terms were used to

search databases without year published or species

constraints. The online database for Veterinary

Anaesthesia and Analgesia and the Journal of Veter-

inary Emergency and Critical Care were searched by

issue starting in 2000 for relevant articles.

Conclusion Sedatives, injectable anesthetics, opi-

oids, and local anesthetics have immunomodulatory

effects that may have positive or negative conse-

quences on disease processes such as endotoxemia,

generalized sepsis, tumor growth and metastasis,

and ischemia-reperfusion injury. Therefore, anes-

thetists should consider the immunomodulatory

effects of anesthetic drugs when designing anesthetic

protocols for their patients.

Keywords anesthesia, anti-inflammatory, immuno-

modulation, immunosuppression, injectable anes-

thetic, sedative.

Introduction

This article is the second installment of a two part

series on the immune response to inhalation anes-

thesia and anesthetic drugs. The first part reviewed

the pulmonary immune response, the pulmonary

and systemic immune response to mechanical ven-

tilation, and the immunomodulatory effects of

inhaled anesthetics. This second part reviews the

immunomodulatory effects of commonly used inject-

able anesthetics and sedatives and provides a brief

comparison between the immunomodulatory prop-

erties of total intravenous anesthesia (TIVA) and

inhalation anesthesia.

It is becoming clear that injectable sedatives and

anesthetic agents exert pharmacologic effects

beyond sedation, anesthesia, and analgesia

(Table 1). Many injectable sedatives and anesthetics

used in veterinary anesthesia have been evaluated

for their effect on the immune system and the

majority of these drugs demonstrated immunomod-

ulatory properties. Though all of the drugs discussed

below have been evaluated for their effects in vitro

and in laboratory animal models, the majority of

drugs have not been fully investigated for their

immunomodulatory effects in clinical patients.

Drugs used by anesthetists may have anti-inflam-

matory properties, by which they modulate the

innate immune response, or immunosuppressive

properties, by which they modulate the adaptive

immune response (Fig. 1). The innate immune
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Table 1 Summary of injectable anesthetic drugs and their potential immunomodulatory effects

Drug

Primary immune

cells affected Immunomodulatory effects

Disease processes on

which drug may exert

positive effects

Disease processes

on which drug may

exert negative effects

Dexmedetomidine Macrophages Anti-inflammatory: Modulation of the

TLR4-NFjB pathway, reduction in

pro-inflammatory cytokine

production, promotion of

macrophage phagocytosis

Sepsis, endotoxemia,

VILI, ALI

Midazolam

Diazepam

Macrophages,

lymphocytes,

neutrophils

Anti-inflammatory and

immunosuppressive: Reduced

oxidative burst in phagocytes,

reduced lymphocyte proliferation,

delayed neutrophil apoptosis,

reduced COX2 and iNOS

Chronic inflammation,

sepsis

Acepromazine

Promethazine

Neutrophils Anti-inflammatory: anti-oxidant,

reduced ROS production, interferes

with oxidation-reduction reactions in

some bacteria

Acute inflammation,

Mycobacterium spp

infection

Ketamine NK cells,

neutrophils,

macrophages

Anti-inflammatory: Suppression of NK

cells, suppression of neutrophil

chemotaxis and superoxide

formation, suppression of

macrophage oxidative burst,

modulation of the TLR4-NFjB
pathway, reduction in pro-

inflammatory cytokine production

Sepsis, ischemia-

reperfusion injury,

ALI

Tumor metastasis

Thiopental T lymphocytes,

macrophages

Immunosuppressive and anti-

inflammatory: Suppression of T

lymphocyte function, reduction in

platelet tissue factor and TNF-a
production, suppression of

macrophage oxidative burst

Endotoxemia, renal

ischemia-

reperfusion injury

Nosocomial infection

Propofol Dendritic cells,

neutrophils,

NK cells,

macrophages

Anti-inflammatory: anti-oxidant,

reduction in effects of PGE2,

suppression of neutrophil phagocytic

function and ROS production,

improve NK cell function, reduction

of macrophage phagocytic function

Endotoxemia,

ischemia-

reperfusion injury,

ALI, tumor

metastasis

Morphine Macrophages,

neutrophils,

NK cells,

lymphocytes

Immunosuppressive and anti-

inflammatory: reduction of

macrophage phagocytic function,

reduction of NK cell activity,

interference with antigen

presentation, decreased activation

and proliferation of T lymphocytes,

reduction in cell-mediated (Th1) T

cell responses, increases

lymphocyte apoptosis, disruption of

B lymphocytes differentiation into

plasma cells

Acute inflammation Sepsis, microbial

infection, chronic

inflammation,

tumor metastasis

Lidocaine Neutrophils,

endothelial cells

Anti-inflammatory: Reduced oxidative

burst in phagocytes, stabilization of

endothelial membranes, reduced PG

production, reduced neutrophil

adhesion and ROS production

Endotoxemia, ALI,

ischemia and

reperfusion injury

TLR, Toll-like receptor; NF, nuclear factor; VILI, ventilator-induced lung injury; ALI, acute lung injury; COX, cyclooxygenase; iNOS,

inducible nitric oxide synthase; ROS, reactive oxygen species; NK, natural killer; TNF, tumor necrosis factor; PG, prostaglandin.
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response involves the recognition of foreign entities

that have invaded the body via pattern recognition

receptors and the initial local response that is

mounted by innate immune cells such as neutroph-

ils, macrophages, and natural killer (NK cells) and

local adaptive immune cells such as cytotoxic T

lymphocytes. These innate immune cells work to

neutralize foreign entities in a non-specific manner

using phagocytosis and oxidative burst (neutrophils

and macrophages), production of reactive oxygen

species (neutrophils), and production of cytotoxins

that induce apoptosis (cytotoxic T lymphocytes and

NK cells). Additional non-cellular responses such as

activation of the complement system, coagulation

cascade, and arachidonic acid pathway, along with

production of acute phase proteins in the liver, are

also activated during the initial immune response.

As part of the initial immune response, antigen

presenting cells such as macrophages, dendritic

cells, mast cells, and B lymphocytes sample the

environment for foreign antigens and other non-self

molecular patterns. When a foreign antigen or

molecular pattern is recognized by the antigen

presenting cell’s pattern recognition receptor,

pathways are activated that cause it to propagate

the innate immune response via cytokine and

(a)

(b)

(c)

(d)

(e)

(h)

(g)

(f)

Figure 1 The immunomodulatory effects of injectable anesthetic drugs as described in Table 1 on the immune response to

microbial invasion. (a) Extravasation of a neutrophil. Neutrophils roll (mediated by selectins), tether (mediated by E-selectin),

and adhere to endothelial cells (mediated by intracellular adhesion molecules, ICAM), then diapedese between endothelial

cells (mediated by platelet endothelial cell adhesion molecule, PECAM) out of the blood vessels. (b) Neutrophils phagocytose

pathogens and produce reactive oxygen species (ROS). (c) Plasma cells release antibodies to neutralize antigens. (d) Cytotoxic

T lymphocytes (TC) recognize non-self or stress peptides presented by infected or dysfunctional cells, respectively, on their

major histocompatibility complex 1 (MHC1) receptors. Once an abnormal cell is recognized, the TC lymphocyte releases

cytotoxins to induce apoptosis, resulting in the cell’s death. (e) Natural killer (NK) cells function similarly to TC lymphocytes,

however, they can recognize abnormal cells with or without presentation on the MHC1 receptors. (f) Macrophages

phagocytose pathogens and kill them in phagosomes via respiratory burst. (g) Macrophages recognize non-self molecular

patterns with pattern recognition receptors leading to activation of intracellular signaling, upregulation of appropriate gene

expression (e.g. nuclear factor kappa B (NFjB) pathway), and release of chemokines and cytokines. (h) Antigen presenting

cells (APC), such as macrophages, travel through the lymph to a lymph node where they present their antigen to na€ıve T

helper (Th) cells. A Th1 response results in the production of cytotoxic T cells (TC) to generate a cell-mediated response. A Th2

response results in the production of B cells and plasma cells to generate a humoral or antibody-mediated response.
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chemokine release and to activate the adaptive

immune response via antigen presentation within

nearby lymphocytes.

Within the lymphocytes, na€ıve T lymphocytes

transform into helper T (Th) lymphocytes of two

different varieties, Th1 and Th2, depending on the

type of antigen presented. A Th1 response is gener-

ated when intracellular aberrations are detected,

resulting in the production of cytotoxic T cells that

kill abnormal cells directly. Alternatively, a Th2

response is generated when extracellular aberrations

are detected, resulting in the production of B

lymphocytes and plasma cells that use antibodies

to neutralize antigens. These adaptive immune

responses take days to mount, so they are critical

for the neutralization of ongoing threats, such as a

microbial infection.

Multiple literature searches were performed from

March 2012 through November 2013 using online

databases including PubMed and Google Scholar.

Relevant anesthetic and immune terms were used to

search databases without year published or species

constraints. Initial searches used broad terms such

as ‘anesthesia and immune response.’ Additional

searches using more specific key terms such as a

drug name, disease process, immune cell, species, or

authors’ last names were used to obtain information

for specific topics. Review articles were used as a

source for additional relevant articles and provided a

basis for more specific literature searches using

online databases. The online databases for Veteri-

nary Anaesthesia and Analgesia and the Journal of

Veterinary Emergency and Critical Care were

searched by issue from 2000 to 2013 for relevant

articles.

Immunomodulation by injectable

sedative and anesthetic agents

Sedatives and tranquilizers

Alpha2-adrenergic agonists

The effect of a2-adrenergic agonists on the immune

system is postulated to be mediated by stimulation of

sympathetic adrenergic receptors on immune effec-

tor cells such as macrophages (Flierl et al. 2009).

The majority of investigations into the modulation of

inflammatory processes by a2-adrenergic receptor

agonist drugs have focused on dexmedetomidine due

to its potential for clinical use in critically ill human

patients.

Many studies report that a2-adrenergic receptor

agonist drugs demonstrate anti-inflammatory effects

in models of acute inflammation, such as sepsis and

acute lung injury (ALI; Yang et al. 2008; Qiao et al.

2009; Wu et al. 2013; Chen et al. 2014). Specifi-

cally, Yang et al. demonstrated that an intravenous

(IV) infusion of dexmedetomidine (5.0 lg kg�1

hour�1) significantly attenuated pulmonary inflam-

mation associated with ventilator-induced lung

injury (VILI) when using 20 mL kg�1 tidal volume

(VT) in rats. The anti-inflammatory effects of dex-

medetomidine were ameliorated by the simulta-

neous administration of yohimbine, suggesting that

the anti-inflammatory effects may be due to the

agonist effects of dexmedetomidine at a2- adrenergic
receptors. Additionally, anti-inflammatory effects

were not apparent at lower infusion rates of

dexmedetomidine (0.5 or 2.5 lg kg�1 hour�1),

suggesting that the effects of dexmedetomidine on

inflammation are dose-dependent (Yang et al.

2008). A dose-dependent effect of dexmedetomidine

on inflammation has been demonstrated in a dog

model of VILI. In that study, the highest dose

(2.0 lg kg�1 hour�1) ameliorated lung inflamma-

tion, while the lowest dose (0.5 lg kg�1 h�1) had

little effect (Chen et al. 2014). Qiao et al.

evaluated the effects of higher infusion rates of

dexmedetomidine (5.0 lg kg�1 hour�1) in a rat

cecal-ligation-puncture sepsis model and found that

dexmedetomidine reduced systemic tumor necrosis

factor alpha (TNF-a) and interleukin (IL)-6 cytokine

concentrations, and reduced early mortality.

The anti-inflammatory effects of dexmedetomidine

may also be independent of agonism of a2-
adrenergic receptors. In a cecal-ligation-puncture

model of sepsis, rats treated with either 10 or

20 lg kg�1 of dexmedetomidine intraperitoneally

had decreased IL-6 and TNF-a concentrations,

decreased activity of nuclear factor kappa B (NFjB),
and Toll-like receptor (TLR) 4/Myeloid differentia-

tion primary response gene 88 (MyD88) expression

was suppressed, suggesting that modulation of the

TLR4-NFjB pathway plays a role in the anti-

inflammatory effects of dexmedetomidine (Wu et al.

2013).

Compared to lorazepam sedation, dexmedetomi-

dine sedation of critically ill patients was associated

with a decrease in the number of days of mechanical

ventilation, a reduction in brain dysfunction, and

improved survival (Pandharipande et al. 2010). The

authors of that study proposed that the difference in

outcomes between patient groups could be produced
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from drug effects on macrophages because it has

been shown in other studies that benzodiazepines

inhibit, and a2-adrenergic agonists promote, mac-

rophage phagocytic function in vitro (Weatherby

et al. 2003; Kim et al. 2006; Pandharipande et al.

2010). The conclusion that the immunomodulatory

effects of a2-adrenergic receptor agonists are medi-

ated primarily by macrophages during acute inflam-

mation is reasonable given that a2-adrenergic
agonists (xylazine, dexmedetomidine, and clonidine)

apparently have no effect on neutrophil chemotaxis,

phagocytosis, or superoxide production in vitro

(Nishina et al. 1999).

Benzodiazepines

Benzodiazepines have a suppressive effect on the

innate and adaptive immune response, especially

when used chronically (Sanders et al. 2009).

Following midazolam administration to horses,

neutrophil and peritoneal macrophage pathogen

phagocytosis and phagocyte oxidative burst were

reduced ex vivo (Massoco & Palermo-Neto 2003).

Treatment with midazolam was also associated with

a decrease in the upregulation of proinflammatory

genes, including cyclooxygenase 2 (COX2) and

inducible nitric oxide synthase (iNOS), after expo-

sure to lipopolysaccharide (LPS) in a human mac-

rophage cell culture line (Kim et al. 2006).

Diazepam affects the adaptive immune response by

inhibiting lymphocyte proliferation (Huemer et al.

2010). Benzodiazepines, at clinically relevant doses,

inhibit neutrophil apoptosis in vitro (Goto et al.

2003) which could have implications for the path-

ophysiology of sepsis where delayed neutrophil

apoptosis may contribute to the dysregulation of

the systemic immune response (O’Brien & Kirby

2008).

Phenothiazines

Phenothiazines have anti-oxidant effects that may

result in immunomodulation. When the effect of

acepromazine on the production of reactive oxygen

species (ROS) was evaluated in vitro using equine

neutrophils, ROS production was reduced in a dose-

dependent manner (Sandersen et al. 2011). In

another study, administration of acepromazine or

promethazine to horses resulted in a significant

decrease in ROS production in activated neutrophils

ex vivo compared to untreated horses (P�eters et al.

2009). Based on the lack of in vivo data, the clinical

significance of the studies reported here is unknown.

Interestingly, phenothiazines are under intense

investigation as human anti-tubercular drugs,

including multi-drug resistant Mycobacterium tuber-

culosis, because they inhibit NADH:quinone oxido-

reductase, thereby interfering with oxidation-

reduction reactions within the bacterium (Warman

et al. 2013).

Injectable anesthetic agents

Ketamine

Ketamine is considered to have anti-inflammatory

and immunosuppressive effects, although the mag-

nitude of its effect on modulating the immune system

in clinical cases is speculative (Liu et al. 2012).

Ketamine administration reduced total natural killer

(NK) cell number and activity leading to increased

lung tumor metastasis in rat models (Melamed et al.

2003; Estes et al. 2009). However, to the authors’

knowledge, there are no clinical reports document-

ing increased tumor metastasis in patients treated

with ketamine.

Ketamine exerts its anti-inflammatory effects by

suppression of neutrophil chemotaxis and superox-

ide formation (Zahler et al. 1999; Lu et al. 2010)

and by reducing pro-inflammatory cytokine produc-

tion, including TNF-a, IL-1b, and IL-6, and reducing
oxidative burst in macrophages (Chang et al. 2005,

2010; Chen et al. 2009). The anti-inflammatory

effects of ketamine exerted during septic processes

may be, at least partially, mediated by decreasing

TLR4 expression leading to decreased NFjB expres-

sion and decreased pro-inflammatory cytokine pro-

duction (Yu et al. 2007). Similarly, to the authors’

knowledge, no clinical studies have evaluated the

use of ketamine in septic patients, human or

veterinary, though improved survival has been

demonstrated following ketamine administration in

multiple rodent models of sepsis (Liu et al. 2012).

The effects of ketamine on the immune system in

LPS models of inflammation are variable. The effect

of racemic ketamine, used at a sub-anesthetic

infusion rate (1.5 mg kg�1 hour�1), failed to reduce

LPS-induced proinflammatory cytokine production,

including TNF-a and thromboxane B2, concentra-

tion in the blood in conscious healthy horses

administered LPS (Alcott et al. 2011). Alternatively,

ketamine inhibited LPS-induced production of pro-

inflammatory cytokines (IL-6, IL-8 and TNF-a) in an

equine macrophage cell line (Lankveld et al. 2005)
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and human whole blood in vitro (Kawasaki et al.

1999). Similarly, in mice challenged with LPS, the

administration of intra-peritoneal ketamine, in addi-

tion to 0.2–0.5% sevoflurane, reduced TNF-a pro-

duction by and phagocytic capacity of Kupffer cells

(Takahashi et al. 2010). It is possible that ketamine

and sevoflurane had additive anti-inflammatory

effects in this study (Rodr�ıguez-Gonz�alez et al.

2013).

Ketamine may also exert protective effects, both

locally and remotely, after organs are subjected to

ischemia-reperfusion injury. In a rat intestinal

ischemia-reperfusion injury model, ketamine admin-

istration attenuated intestinal damage when admin-

istered intra-peritoneally at a dose >12.5 mg kg�1

(Guzm�an-De La Garza et al. 2010). In a rat model of

renal ischemia-reperfusion injury, ketamine admin-

istration significantly reduced renal oxidative injury

(Dogan et al. 2010). In a rabbit hepatic ischemia-

reperfusion injury model, a single small dose of

ketamine (0.5 mg kg�1) administered 10 minutes

prior to ischemia significantly decreased remote ALI

(Shen et al. 2011). Based on the ability of ketamine

to alter neutrophil function, as discussed above, it is

not surprising that it exerts protective effects against

ischemia-reperfusion injury in animal models, as

neutrophil accumulation is associated with the

adverse effects within tissues subjected to ischemia

and reperfusion.

Barbiturates

Thiopental has immunosuppressive effects on T

lymphocytes, inhibits TNF-a activation of the

NF-jB pathway, and potentially increases the risk

for nosocomial infection when used long term

(Corrêa-Sales et al. 1997; Loop et al. 2003).

Recently, barbiturates have been evaluated for their

immunomodulatory properties in the face of endo-

toxemia and ischemia-reperfusion injury. In sepa-

rate rodent LPSmodels, thiopental and pentobarbital

reduced platelet tissue factor, a primary activator of

coagulation due to inflammation, and TNF-a,
respectively (Yang et al. 2007; Hartmann et al.

2009). Additionally, injection of sodium thiopental

intra-peritoneally into rats resulted in decreased

phagocytic activity of peritoneal macrophages (Sal-

man et al. 1998). In a rat model of renal ischemia-

reperfusion injury, thiopental significantly reduced

renal oxidative injury (Dogan et al. 2010). The use

of barbiturates in veterinary anesthesia is now

limited by their availability in some countries.

Propofol

Propofol has been investigated for its potential

immunomodulatory effects when used as a general

anesthetic and when used at sub-anesthetic dosages.

Overall, it is considered to have anti-oxidant and

anti-inflammatory effects (Sanders et al. 2009). In

mice, propofol suppressed in vitro dendritic cell

prostaglandin E2 (PGE2) production, an end-product

of arachidonic acid metabolism, and decreased

PGE2-mediated vasodilation, hyperalgesia, and fever

(Inada et al. 2011). The immunomodulatory ability

of propofol may be enhanced by preservatives and

carriers such as ethylenediaminetetraacetic acid

(EDTA) and fat emulsion due to their anti-inflam-

matory effects and neutrophil suppression, respec-

tively (Heine et al. 1996; Haitsma et al. 2009).

Propofol may inhibit the pulmonary immune

response to parenterally administered LPS (Gao

et al. 2004; Gu et al. 2012). Cultured pulmonary

epithelial cells were protected from LPS-induced

apoptosis and autophagy by propofol (Gu et al.

2012). In a rat endotoxic shock model, propofol

attenuated markers of inflammation and oxidation

in bronchoalveolar lavage (BAL) fluid and was

associated with improved survival (Gao et al.

2004). The exact mechanism by which propofol

protects the lungs is unknown, but is likely related to

its systemic anti-inflammatory properties.

Propofol may protect against ALI following intes-

tinal ischemia and reperfusion injury through

reduction in intracellular adhesion molecule-1

(ICAM-1) expression, which would, theoretically,

reduce neutrophil influx into the lung (Hu et al.

2005). In a rabbit cardiopulmonary by-pass model,

propofol reduced the effects of cardiac ischemia-

reperfusion injury, but was not as effective as

isoflurane (Asgeri et al. 2011). In rats, propofol

significantly reduced subsequent oxidative injury in

a renal ischemia-reperfusion injury model (Dogan

et al. 2010) and reduced neuronal autophagy in a

cerebral ischemia-reperfusion injury model that

resulted in improved cell survival (Cui et al. 2012).

In addition, propofol attenuated ALI following

intestinal ischemia-reperfusion in rats (Vasileiou

et al. 2012).

The effects of propofol on the adaptive immune

response have been investigated, and in particular

for its potential role as an anti-tumor therapy. In a

cell culture model using murine peritoneal macro-

phages and NK cells, propofol suppressed peritoneal

macrophage PGE2 production resulting in increased
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interferon gamma (IFN-c) production by NK cells

(Inada et al. 2010). Suppression of PGE2 has impli-

cations in the development of anti-tumor therapies

because of its positive effect on NK cell function,

which is important for recognition and destruction

of tumor cells. In an in vivo model, rats were

anesthetized for 1 hour with ketamine, thiopental,

halothane, or propofol, and then administered NK-

susceptible tumor cells intravenously following

anesthesia (Melamed et al. 2003). Rats anesthetized

with propofol maintained normal NK cell activity,

had decreased numbers of tumor cells, and reduced

lung metastases compared to rats in all other

anesthetic groups. Rats anesthetized with ketamine

had the most lung metastases and the second

greatest reduction in NK cell activity after thiopental

(Melamed et al. 2003).

Opioids

It is well recognized that opioids, specifically mor-

phine, are immunosuppressive, although the exact

mechanisms by which they modulate the immune

system are incompletely understood (Sanders et al.

2009; Odunayo et al. 2010; Roy et al. 2011). In

addition, some opioids (e.g. morphine) exert greater

immunosuppressive effects than others (e.g. tram-

adol; Sacerdote et al. 2000). The innate and adap-

tive immune suppression caused by opioids is

independent of their anti-nociceptive effects and is

probably mediated by l opioid receptors expressed

on immune cells, including macrophages, neutroph-

ils, NK cells, and lymphocytes (Shavit et al. 1984;

Roy et al. 1998; Sanders et al. 2009; Odunayo et al.

2010). In addition, opioids act on opioid receptors in

the central nervous system and may alter neuroen-

docrine and autonomic functions to cause immuno-

modulation. These effects are summarized in a

review article and are beyond the scope of this

article (Odunayo et al. 2010). Some immunosup-

pressive functions of opioids are amplified following

sympathetic activation, resulting in catecholamine

and corticosteroid release by j and d receptor

activation (Sanders et al. 2009; Roy et al. 2011).

Morphine, especially when used chronically, sup-

presses the innate immune system by inhibiting

cytokine secretion, interfering with leukocyte

recruitment, and decreasing bacterial clearance by

inhibiting macrophage-mediated phagocytosis (Choi

et al. 1999; Martin et al. 2010a; Roy et al. 2011;

Ninkovic & Roy 2012). In particular, morphine

administration, both acute and chronic, may have a

negative effect on wound healing (Rook et al. 2009;

Martin et al. 2010a,b). Morphine, especially when

used chronically, suppresses the adaptive immune

system by interfering with antigen presentation,

preventing activation and proliferation of T lympho-

cytes and decreasing cell-mediated T cell responses,

increasing lymphocyte apoptosis, and interfering

with the differentiation of B lymphocytes into

antibody-secreting plasma cells (B€orner et al.

2009; Sanders et al. 2009; Roy et al. 2011; Brown

et al. 2012; Mizota et al. 2013). Therefore, the use

of opioids (morphine) may be advantageous early in

a disease process to decrease inflammation, such as

in equine septic arthritis (van Loon et al. 2010) but,

because morphine also suppresses immune

responses after the initial inflammatory stage, its

administration may lead to increased infection rates

(Roy et al. 2011).

Opioids exert a variable effect on the immune

response to sepsis and infection. In general, mor-

phine administration, especially when used chron-

ically, potentiates infection and interferes with the

innate immune response generated to control sepsis

(Ocasio et al. 2004; Odunayo et al. 2010; Roy et al.

2011; Banerjee et al. 2013). In addition, it may

potentiate LPS-induced clinical signs by decreasing

an animal’s tolerance to LPS, a protective mecha-

nism to prevent an excessive, and possibly counter-

productive, response to LPS by the innate immune

system (Banerjee et al. 2013). Alternatively, cardio-

vascular protective effects of buprenorphine have

been demonstrated in swine and rat models of sepsis

(Donaldson et al. 1988; Tseng & Tso 1993). In two

separate rat cecal-ligation-puncture models, tram-

adol, buprenorphine, and fentanyl had little to no

effect on measured inflammatory parameters or

survival (Hugunin et al. 2010; Nardi et al. 2013).

Slow-release morphine potentiated the virulence of

Pseudomonas aeruginosa in mice (Babrowski et al.

2012). Increased mortality has been associated with

the chronic use of morphine in animals infected with

Streptococcus pneumonia, Salmonella typhimurium,

Salmonella enterica, Toxoplasma gondii, and Listeria

monocytogenes (Sanders et al. 2009; Roy et al.

2011). Perhaps caution should be exercised when

choosing to administer opioids, especially morphine,

to immunocompromised patients or to patients

experiencing infectious processes, although the

negative effect of pain on the activity of the immune

system cannot be ignored.

The effect of opioids, especially morphine, on

tumor growth and metastasis has been investigated
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and reviewed extensively (Sacerdote et al. 2000;

Bimonte et al. 2013; Mao et al. 2013). The reduc-

tion in T lymphocyte population, particularly cyto-

toxic T lymphocytes, with chronic opioid use may

inhibit the adaptive immune response to tumor

formation (Sanders et al. 2009; Bimonte et al.

2013). Morphine has been shown to have differing

effects on tumor growth, and these effects are

thought to be exerted by l receptor activation of

cell growth or apoptosis pathways (Gupta et al.

2002; Sasamura et al. 2002; Iglesias et al. 2003;

Bimonte et al. 2013; Mao et al. 2013). In addition,

morphine may contribute to tumor metastasis via

increased angiogenesis that may be mediated, at

least in part, by increased COX2 and PGE2 concen-

trations in tumor cells (Gupta et al. 2002; Farooqui

et al. 2007; Bimonte et al. 2013; Mao et al. 2013).

Moreover, treatment with the COX2 inhibitor, cel-

ecoxib, ameliorated the increase in COX2, PGE2, and

angiogenesis, reduced tumor growth weight, and

reduced metastasis associated with chronic mor-

phine administration in a mouse model of breast

cancer (Farooqui et al. 2007). Therefore, co-admin-

istration of non-steroidal anti-inflammatory drugs

with opioids may reduce the deleterious effects of

opioid administration to cancer patients.

Local anesthetics

Lidocaine has been evaluated extensively for its well-

recognized immunomodulatory effects in many dis-

ease processes, including endotoxemia and ische-

mia-reperfusion injury (Mikawa et al. 1994; Sevimli

et al. 2004; Jinnouchi et al. 2005; Xu et al. 2006;

Cook et al. 2009a). In one study in anesthetized

rabbits, lidocaine pre-treatment attenuated the pul-

monary inflammatory response to Escherichia coli

endotoxin (Mikawa et al. 1994). Similarly, lidocaine

administration reduced remote lung injury due to

intestinal ischemia-reperfusion injury in horses

(Montgomery et al. 2014). Using an ex vivo model

with rat lung, in which ALI was induced with

N-formyl-L-leucin-methionyl-L-phenylalanine

(fMLP, a component of the bacterial cell wall),

lidocaine and mepivicaine reduced the release of

endothelin-1 and decreased the model-created acute

neutrophilic alveolitis (Konrad et al. 2006).

The anti-inflammatory effects of lidocaine, in the

presence of LPS, may be due to its inhibition of

pathways required for phagocyte respiratory burst,

such as impairing up-regulation of cytochrome

b558, an electron transport molecule for NADPH,

and priming of NADPH oxidase. If phagocyte respi-

ratory burst is impaired, the ensuing collateral

damage from that process would be decreased

resulting in a reduction of subsequent inflammatory

cell influx (Jinnouchi et al. 2005). Additionally,

expression of high mobility group box 1, a marker of

inflammation due to sepsis, and activation of NFjB
were reduced in various tissues in rats treated with

lidocaine, compared to controls, after cecal ligation

and puncture (Wang et al. 2013).

Although the exact mechanism of action of

lidocaine on the immune system is unknown, it

has been shown to affect neutrophil function in vitro,

stabilize endothelial cell membranes, decrease pros-

taglandin production in injured tissues, and have

anti-apoptotic effects (Mikawa et al. 1994; Lan et al.

2004; Sevimli et al. 2004; Xu et al. 2006; Cook

et al. 2009a,b; Kaczmarek et al. 2009; Maeda et al.

2010). Cook et al. (2009b) demonstrated that lido-

caine did not affect equine neutrophil migration in

vitro. Lan et al. (2004) and Ploppa et al. (2010)

demonstrated, in separate studies, that lidocaine

decreased neutrophil cluster differentiation (CD)

18/CD11b receptor expression, a receptor necessary

for neutrophil adhesion, after hypoxic-reoxygen-

ation and oxidative burst induction in whole blood,

respectively. Similarly, Maeda et al. (2010) found a

reduction in CD11b expression, reduced adhesion to

vascular endothelium, and decreased ROS produc-

tion after canine granulocytes were incubated with

lidocaine in vitro. It is possible that the benefits of

lidocaine are due to an indirect effect on white blood

cells, specifically neutrophils, by preventing the

priming or activation of those cells (Mikawa et al.

1994; Lan et al. 2004; Cook et al. 2009b;

Kaczmarek et al. 2009; Ploppa et al. 2010).

Comparison of immunomodulatory

properties between inhaled and

injectable anesthetic protocols

Recent research has demonstrated a distinct differ-

ence in the effects of volatile anesthetic agents and

various injectable anesthetic agents on the immune

response associated with anesthesia. Volatile anes-

thetics consistently protect against the effects of lung

inflammation-inducing models, whereas injectable

anesthetics do not consistently offer protection

against local- or remote-induced lung inflammation.

In a clinical trial evaluating human patients

undergoing one-lung ventilation during thoracic

surgery, mechanical ventilation induced alveolar
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inflammation (increased TNF-a, IL-8, IL-1b within

BAL fluid) that was suppressed by sevoflurane and

desflurane, but not by propofol (Schilling et al.

2011). In a similar study, post-operative morbidity

was reduced in sevoflurane anesthetized and venti-

lated patients compared to those anesthetized with

propofol and mechanical ventilation (De Conno

et al. 2009). In mice, sub-anesthetic concentrations

of isoflurane (0.5 minimum alveolar concentration,

0.5 MAC) improved the activities of superoxide

dismutase and catalase within the lung and serum,

thereby decreasing lung injury and improving sur-

vival, compared to pentobarbital (Mu et al. 2010).

Similarly, isoflurane globally improved the recovery

from cardiac ischemia compared to propofol in a

rabbit cardiopulmonary by-pass model (Asgeri et al.

2011).

Alternatively, in humans, the systemic immuno-

logical effect of TIVA using propofol with sufentanil

was compared to partial intravenous anesthesia

(PIVA) using sevoflurane and thiopental in patients

undergoing elective lumbar discectomy (Schnee-

milch & Bank 2001). In the PIVA groups, IL-6 was

significantly increased upon induction of anesthesia

and interleukin-1 receptor antagonist (IL-1RA) and

interleukin-2 receptor antagonist (IL-2RA) were

decreased compared to TIVA. These findings suggest

that this particular PIVA protocol induced greater

pro-inflammatory effects compared to the TIVA

protocol. In another human study, TIVA using

propofol and fentanyl or PIVA using isoflurane and

fentanyl were evaluated for their effects on pulmo-

nary alveolar macrophages (PAMs) in mechanically

ventilated (VT 8–10 mL kg�1) patients undergoing

non-abdominal and non-thoracic surgical proce-

dures lasting >6 hours and paralyzed with vecuro-

nium (Kotani et al. 1999). All pro-inflammatory

cytokine expression, except IL-6, increased with the

duration of anesthesia, but compared to propofol,

isoflurane resulted in a greater increase in IFN-c and
IL-8 gene expression from PAMs isolated from BAL

fluid. All other cytokine gene expression including

IL-1b, Il-6, and TNF-a were not different between

groups. Additionally, there was a slight, though

significant, increase in total neutrophils retrieved

from BAL fluid in patients anesthetized with isoflu-

rane compared to propofol; although, there was a

significant increase in neutrophil count in BAL fluid

over the course of anesthesia in both groups. As with

other studies, the confounding effect of surgical

procedures and mechanical ventilation on the pul-

monary immune response cannot be ignored and

may have contributed to the differences between

groups in that study.

Interestingly, there appears to be a difference in

the results from the studies discussed above based on

when studies were performed. Studies performed

more than 10 years ago tended to find increased

inflammation occurring with inhalation anesthesia

compared to TIVA, whereas more recent studies

have demonstrated a greater protective effect of

inhaled fluorinated hydrocarbon anesthetics com-

pared to injectable anesthetics. The discrepancy in

findings among studies could be based on the

advancement of immunologic assays, such as quan-

titative polymerase chain reaction (qPCR), or it

could be due to an evolution in anesthetic protocols.

In anesthetized, mechanically ventilated pigs, the

pulmonary inflammatory and oxidative injury was

greater in the pigs anesthetized with sevoflurane or

desflurane than in the pigs anesthetized with prop-

ofol or thiopental (Takala et al. 2004; Kalimeris

et al. 2011). The reason for the discrepancy in these

authors’ findings compared to many other studies is

not readily apparent based on their reported proto-

cols, but may be due to species differences. For

example, some species including horses, pigs, cattle,

sheep, rabbits and cats have pulmonary intravascu-

lar macrophages (PIMs; Parbhakar et al. 2004).

PIMs are intimately involved in the pulmonary

immune response although they have not been

extensively studied in anesthetized patients. Taken

together, this species difference highlights the need

for species-specific research to elucidate differences

in the pulmonary response to various anesthetic

protocols.

In ponies anesthetized with halothane, isoflurane,

or thiamylal IV and administered oxygen, structural

changes in PIMs resulted in platelet trapping (Atwal

& McDonell 2005). These changes also occurred

with thiamylal suggesting that either thiamylal

exerted effects on the lung despite IV administration,

or more likely, that inhaling oxygen has an effect on

the pulmonary immune response. The clinical sig-

nificance of these structural changes is unknown,

but the authors of that study proposed that the PIMs

activated the platelets as part of the inflammatory

cascade (Atwal & McDonell 2005). To the authors’

knowledge, no other studies designed to assess the

pulmonary or systemic immune response to anes-

thetics have been performed in horses.

The difference in systemic effects between TIVA

and inhalation anesthesia are inconsistent. In

a mouse liver transplant model, there was no
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difference in the systemic inflammatory response

between TIVA with xylazine-ketamine-aceproma-

zine compared to isoflurane (He et al. 2010). Sim-

ilarly, in a swine hemorrhagic shock model, there

was no difference in the production of inflammatory

cytokines measured in the serum between swine

anesthetized with ketamine-midazolam-buprenor-

phine or swine anesthetized with isoflurane (Engle-

hart et al. 2008). Alternatively, in human patients

undergoing open cholecystectomy and anesthetized

with either TIVA using propofol-remifentanil or

isoflurane, patients in the TIVA group had signifi-

cantly lower proinflammatory cytokine, IL-6 and

TNF-a, concentrations in their serum at the end of

the surgical procedure (Ke et al. 2008).

In regard to the stress response induced by

anesthesia, TIVA may be superior to inhalation

anesthesia in reducing hypothalamic-pituitary-

adrenal axis (HPAA) activation. In the study by

Schneemilch & Bank discussed above, cortisol,

epinephrine, and norepinephrine concentrations

were significantly increased in the inhaled anes-

thetic group compared to the TIVA group indicating

that the HPAA stress response was enhanced in the

group administered inhaled anesthetics (Schnee-

milch & Bank 2001). The stress response to anes-

thesia has also been evaluated in ponies anesthetized

with a TIVA protocol using detomidine, ketamine,

and guaifenesin or halothane. Similar to humans, it

was found that TIVA elicited a decreased stress

response compared to halothane in ponies (Luna

et al. 1996). Immunomodulation by suppression of

the HPAA is important to consider when critically

evaluating any study investigating the immune

response to anesthetics; however, a full evaluation

of this phenomenon is beyond the scope of this

review.

Conclusion

In the future, anesthetic protocols may be chosen

not only for their anesthetic and analgesic effects but

also for their immunomodulatory effects. There is a

growing body of evidence suggesting that the choice

of anesthetic is important when considering the

underlying disease for which an animal is being

anesthetized (Kurosawa & Kato 2008; Sanders et al.

2009; Odunayo et al. 2010; Mao et al. 2013). For

example, immunosuppressive effects may be desir-

able in anesthetizing a septic horse for exploratory

laparotomy, whereas an immunosuppressive proto-

col for anesthesia of a dog for tumor removal is

contra-indicated. In summary, the immunomodula-

tory effects of the entire anesthetic protocol should

be considered when anesthesia is required for a

particular patient.
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